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Abstract. MPI derived datatypes allow users to describe noncontiguous 
memory layout and communicate noncontiguous data with a single 
communication function. This powerful feature enables an MPI implementation 
to optimize the transfer of noncontiguous data. In practice, however, many 
implementations of MPI derived datatypes perform poorly, which makes 
application developers avoid using this feature. In this paper, we present a 
technique to automatically select templates that are optimized for memory 
performance based on the access pattern of derived datatypes. We implement 
this mechanism in the MPICH2 source code. The performance of our 
implementation is compared to well-written manual packing/unpacking routines 
and original MPICH2 implementation. We show that performance for various 
derived datatypes is significantly improved and comparable to that of optimized 
manual routines. 
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1   Introduction 

MPI derived datatypes [7] enable users to describe noncontiguous memory layouts 
compactly and to use this compact representation in MPI communication functions. 
Derived datatypes also enable an MPI implementation to optimize the transfer of 
noncontiguous data. For example, if the underlying communication mechanism 
supports noncontiguous data transfers, the MPI implementation can communicate the 
data directly without packing it into a contiguous buffer. On the other hand, if packing 
into a contiguous buffer is necessary, the MPI implementation can pack the data and 
send it contiguously.  

In practice, however, many MPI implementations perform poorly with derived 
datatypes—to the extent that users often resort to packing the data manually into a 
contiguous buffer and then calling MPI. Such usage clearly defeats the purpose of 
having derived datatypes in the MPI Standard. Since noncontiguous communication 
occurs commonly in many applications (for example, Fast Fourier transform, array 
redistribution, and finite-element codes), improving the performance of derived 
datatypes has significant value. 



The performance of derived datatypes can be improved in several ways. 
Researchers have used data structures that allow a stack-based approach to parsing a 
datatype, rather than making recursive function calls, which are expensive [4], [11], 
[12]. These works improved the performance of derived datatypes to the level of 
performance with naïve manual implementations for packing noncontiguous data. 
(We do better than that in this paper.) Wu et al. [13] improved the performance of 
MPI derived datatypes by taking advantage of the features in InfiniBand to overlap 
packing and unpacking a message with network communication.  

The performance of derived datatypes can be improved further by using optimized 
algorithms for packing and unpacking of data. Many implementations of derived 
datatypes use loops in packing/unpacking noncontiguous data. Utilizing data locality 
in these loops by applying loop optimizations, which a developer cannot easily do 
without advanced knowledge of memory hierarchy design and optimizations, is 
beneficial. This area is the focus of our study. These techniques are useful for MPI 
implementations on various network channels and the performance gain is not limited 
to fast networks. Our previous work [1] presents the scope of performance 
improvement by using MPI’s profiling interface (PMPI). In this paper, we present 
automatic selection of optimized packing/unpacking templates within the MPICH2 
source code, based on data access patterns, data size, and memory architecture. 
Ogawa et al. [9] used optimized templates in improving MPI performance for 
instantiating partial-evaluation code selection in order to reduce software overhead. 
We, in contrast, use templates to optimize memory performance. 

The rest of this paper is organized as follows. In Section 2, we present the design 
of our optimization mechanism. In Section 3, we describe the implementation details 
in selecting optimized templates dynamically. In Section 4, we present our 
experimental results, followed by conclusions in Section 5. 

2   Optimization Mechanism 

To choose optimized templates automatically, we developed a systematic approach. 
Our method first retrieves the data access pattern of a derived datatype from user’s 
definition and verifies whether performance improvement is possible with 
optimizations for a derived datatype before applying them. If improvement is 
possible, our optimization method uses an analytical model [2] to predict memory 
access cost and to find optimization parameters with the lowest access cost. These 
parameters are passed to templates to pack/unpack noncontiguous data.  

Overall procedure of optimizing an MPI communication function using derived 
datatypes has two steps. In the first step, we verify whether a datatype is optimizable 
or not, and find optimization parameters. In the second step, MPI communication 
function calls optimized templates automatically. 

In MPI programs, after defining a derived datatype, it has to be committed by 
calling MPI_Type_commit. We modified the implementation of the 
MPI_Type_commit function to verify whether optimization is possible. The 
modified implementation first retrieves the data access pattern, which includes the 
type of the user-defined datatype, old datatype, strides between consecutive memory 



accesses, size of the data items, and depth of the derived datatype. If the old datatype 
is another derived datatype (that is, when a derived datatype is nested), 
MPI_Type_commit retrieves these values for that inner datatype as well. We use 
the datatype decoder functions of MPI-2, namely MPI_Type_get_envelope and 
MPI_Type_get_contents to retrieve the pattern. The overhead of decoding 
datatypes by using these functions is low.  

In order to determine whether a datatype is optimizable or not, the modified 
MPI_Type_commit function verifies a series of heuristics that cause cache misses. 
It verifies whether the datatype is contiguous or noncontiguous, examines whether the 
data size is more than cache size, and then calculates the factor of cache and TLB 
reuse. The optimization method reverts back to the original implementation if it 
determines that the performance cannot be improved at any of these verifications. We 
use an optimization flag (is_optimizable) to keep track of the results of these 
verifications. If the performance can be improved, MPI_Type_commit determines 
the optimization parameters and sets the flag is_optimization to 1.  

We developed optimized templates to pack/unpack noncontiguous data by using 
various loop optimization methods. In our current implementation, these templates 
use cache blocking [5], loop unrolling, array-padding optimizations, and software-
level prefetching [8].  

Various parameters are required in using these optimizations. Examples of 
optimization parameters are: block size for cache blocking, number of padding 
elements for array padding, and prefetching distance for software-level prefetching. In 
our approach, we first select these optimization parameters based on heuristics. To 
determine if these parameters are optimal, we developed a simple, fast, and accurate 
memory-access-cost prediction model [2]. This model verifies whether the memory 
access cost is reduced with the selected parameters. A new set of optimization 
parameters are selected if the cost is not optimized and the prediction model verifies 
for lowered cost again. 

Examples of optimization parameter selection are as follows. For cache-blocking 
optimization, the block size is selected in a way that each block fits into the cache 
memory and virtual-to-physical address mappings of that block fit in the TLB 
(Translation Look-aside Buffer). For software prefetching, the number of loop 
iterations needed to overlap a prefetching memory access is called the prefetching 
distance [8]. Assuming memory access latency is l, and the work per loop iteration is 
w, the prefetch distance is ceiling (l/w). The main loop that packs data is unrolled for 
all the references that reuse cache lines that are prefetched. An epilogue loop is called 
without prefetching to execute the last few iterations that do not fit in the main loop. 
We use a special gcc function __builtin_prefetch to issue these prefetch 
instructions. A special flag, –mcpu, has to be set to compile MPI source code.  

In the second step, when the MPI_Send function is called to send the data, if the 
is_optimization flag is 1, the MPI_Send calls optimized packing templates 
using the optimization parameters. These templates are also used when the user calls 
MPI_Pack or MPI_Unpack to pack or unpack noncontiguous data.  



3   Performance Results 

We used three sets of benchmarks to evaluate the performance of our optimized 
implementations.  

1. Simple derived datatypes: We chose fixed derived datatypes defined by the 
SKaMPI benchmark [10]. They describe a memory layout consisting of a number of 
units of a basic datatype. The number of units depends on the size of data, the size of 
basic datatype, and strides. We used vector and indexed datatypes.  

2. Nested derived datatypes: We use the nested derived datatypes described by 
Ross et al. in [11]. These datatypes represent a collection of elements from a 3D 
array. When a 3D array is stored in row-major order, accessing the YZ face and all 
the YZ faces of the array in X direction is noncontiguous and has poor locality when 
the size of the YZ face is more than the cache or TLB sizes. We tested a nested 
datatype describing a 3D cube of YZ planes in the X direction with a vector of vectors 
(vector of YZ planes in an array). 

3. NAS benchmarks: Lu et al. [6] modified four NAS benchmarks to apply MPI 
derived datatypes for noncontiguous data communication. Among these, LU, BT, and 
SP have small data transfers and do not benefit from memory optimizations. In the 
MG benchmark, the data transfers in the comm3 function are noncontiguous and are 
implemented as packing-then-sent by a sender process and receive-then-unpacking by 
a receiver. The datatypes described in the modified code are nested datatypes that 
represent vectors of vectors. We also tested the performance of the matrix transpose 
operation from the NAS parallel benchmarks’ Fourier Transform (FT) program, using 
MPI derived datatypes. To describe the transpose operation with a derived datatype, 
we use a datatype that is a vector of vectors (vector of columns in an array). 

Except for the NAS MG benchmark, we obtained the performance results of all 
other benchmarks with an MPI_Send/Recv ping-pong operation. In this operation, 
a process sends a noncontiguous message that is described by the MPI derived 
datatypes, and a destination process receives it contiguously. The destination process 
then sends back the data with the same derived datatype and is received at the first 
process contiguously. The time is measured at the first process and halved to find the 
communication cost for one complete data transfer. We ran 20 iterations of each 
program and calculated the minimum time. We present the performance as transfer 
rate (MB/s) to normalize the results. The size of the message used in the ping-pong 
operation is divided by the measured time to find the rate. For the NAS MG 
benchmark, we compare the execution time of the benchmark.  

We compare the performance results for three implementations: manually packing 
data and sending it (no derived datatypes), MPICH2 version 1.0.3 (unoptimized), and 
our optimized implementation of the MPICH2 code. The manually implemented pack 
and unpack codes are written to represent the way a good programmer would write 
them. Ross et al. [11] showed that the implementation of derived datatypes in 
MPICH2 outperform those implemented in LAM/MPI. Therefore, we directly 
compare our results with MPICH2. We compile all manual codes and MPI 
installations with gcc version 3.2.3 with the flags -O6. 

To test the portability of our optimized implementations, we ran these experiments 
on two different clusters: a 350-node Linux cluster (jazz) at Argonne National 
Laboratory and an 84-node Sun cluster (sunwulf) at Illinois Institute of Technology. 



The nodes of jazz have a 2.4 GHz Pentium-4 processor with 1 GB of memory. These 
processors have 512 KB of built-in L2 cache, with a 64 byte cache line and 8-way 
associative, a TLB of 128 entries, and a page size of 4 KB. The network interconnect 
of this cluster is Fast Ethernet. Each node of the sunwulf cluster is a Sun Blade-100 
workstation with one 500MHz UltraSparc-IIe CPU. The L1 cache is 16 KB, with a 
16-byte cache line size. The L2 cache has a capacity of 8 MB and its line size is 64 
bytes. It has a TLB of 48 entries with 4 KB page size. The network interconnect of 
sunwulf is Gigabit Ethernet.  

Figure 1 shows the performance (rate of sending/receiving data in MB/s) of 
programs using messages formed by vector and indexed datatypes on the jazz cluster. 
Figure 2 shows the performance of the same programs on the sunwulf cluster. On both 
clusters, when the message size is larger than cache size, the performance of the 
original MPICH2 implementation degrades sharply compared to the manual 
implementation for both vector and indexed datatypes. With the optimized 
implementation, this performance is in the same level as that of optimized manual 
codes. These figures also show that the overhead of optimized implementations is 
low.  

 
Fig. 1. Bandwidth measurements for vector (left) and indexed (right) datatype on jazz 

 
 

Fig. 2. Bandwidth measurements for vector (left) and indexed (right) on sunwulf 
 
Figure 3 shows the performance of programs communicating messages formed 

using nested derived datatypes representing a 3D-cube on the jazz cluster and Figure 4 
shows that on the sunwulf cluster. On both clusters, the original MPICH2 performs 
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similar to manual and optimized implementations for smaller data sizes. As the 
message size (size of 3D cube) becomes larger compared to the L2 cache size, the 
performance degrades for MPICH2, whereas the optimized implementation maintains 
superior performance similar to that of the optimized manual program.  

 
Fig. 3. Bandwidth measurements for the 3D-cube experiment on jazz 

 

 
Fig. 4. Bandwidth measurements for the 3D-cube experiment on sunwulf 

 
Figures 5 and 6 show the performance of the NAS MG benchmark on jazz and 

sunwulf clusters, respectively. We measured the execution time of the MG benchmark 
by using 4, 8 and 16 processors with B and C class workloads. The execution time 
with MPICH2 is higher than that of the original MG benchmark implementation 
(manual). With optimized MPICH2, the execution time is up to 8% (on average 6%) 
lower than that of manual implementation, and up to 25% (on average 13%) lower 
than that of unmodified MPICH2 on the jazz cluster. On the sunwulf cluster, for 8 and 
16 processors, the execution time is up to 12% (on average 7.3%) less than that of the 
manual implementation. Here, manual implementation is the original NAS MG 
benchmark, which is not optimized for cache blocking and prefetching. Our optimized 
MPI derived datatype implementation benefits from using cache blocking in the 
nested datatypes in the MG benchmark.  

Figures 7 and 8 show the performance (rate in MB/s) of the matrix transpose 
subroutine of NAS FT benchmark on jazz and sunwulf clusters, respectively. When 
the message size is larger than the L2 cache size, the rate degrades severely for 
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unmodified MPICH2 because of the large number of cache misses caused by poor 
data locality. The optimized MPICH2 implementation benefits from using cache 
blocking in this program. The performance gain is in the range of 50–60% on jazz 
cluster and 50–114% on the sunwulf cluster. 

 
Fig. 5. Execution time of the NAS MG benchmark on jazz (left) and on sunwulf (right) 

 

 
Fig. 6. Execution time of the NAS MG benchmark on sunwulf 

 

 
Fig. 7. Bandwidth measurements for matrix transpose experiment on jazz 
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Fig. 8. Bandwidth measurements for matrix transpose experiment on sunwulf 

4   Conclusions and Future Work 

In this paper, we presented a technique to optimize the performance of MPI derived 
datatypes. Poor data access performance in dealing with noncontiguous data has been 
a major performance bottleneck of in packing and unpacking of MPI derived 
datatypes. Many optimization methods are available in the literature to optimize the 
data-access performance. However, predicting the optimization parameters with low 
overhead and automatically applying these optimization strategies is a challenging 
research issue. We developed models for predicting memory-access cost [2] that can 
help in dynamically applying optimizations. By combining optimization methods with 
a memory access model, we have introduced in this paper an approach to optimize 
memory performance automatically. The optimized implementation of MPI derived 
datatypes chooses packing templates that are optimized for advanced hierarchical 
memory systems of modern machines. These templates are parameterized with 
various architecture-specific parameters (for example, block size and TLB size), 
which are determined separately for different systems. By using these optimized 
templates, we obtained significantly higher performance than the existing MPICH2 
implementation and manual packing/unpacking by the user. This result is significant 
because it will improve the performance of MPI_Pack/Unpack and MPI 
communication functions in many applications that use MPI derived datatypes in 
performing noncontiguous communication. We have shown that our optimized 
implementations are applicable on multiple architectures (Intel and Sun). 

The optimizations described in this paper are not yet incorporated into the 
MPICH2 release, but we plan to do so. We are also looking at other applications of 
automatically selecting optimization parameters using the analytical prediction model. 
For example, in scientific applications, major portion of their run time is spent in 
executing loops. Using optimized templates can improve the performance of those 
loops. We are also working on incorporating prefetching strategies within PVFS [3] to 
improve the performance of data movement. 
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